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"TRIAL AND ERROR" PREDICATES AND TI-IE

SOLUTION TO A PROBLEM OF MOSTOV'SKI'S

By HILARY PUTNAM

1, Introduction . The purpose of this paper is to present two

groups of results vhich have turned out to have a surprisingly

close connection. The first two results (Theorems 1 and 2) were

inspired by the following question: we know what sets are "dec id-

able" namely, the recursive sets (according to Church's Thesis).

But what happens if we modify the notion of a decision procedure

by (1) allowing the procedure to "change its mind" any finite

number of times (in terms of Turing Machines: we visualize the

machine as "printing out" a finite sequence of "yesses" and "nos".

The last "yes" or "no" is always to be the correct answer); and

(2) we give up the requirement that it be possible to tell (ef-

fectively) if the computation has terminated? (i.e. if the ma-

chine has most recently printed "yes", then we know that the

appropriate nxomber must be in the set unless the machine "changes

its mind"; but we have no general procedure for telling whether

the machine will "change its mind" or not.)

In traditional philosophic parlance, the sets for which

there exist a "decision method" in this widened sense are decid-

able by "empirical" means, or by using "Humean induction" for,

if we always "bet" that the most recently generated answer is

correct, we will make a finite nii.mber of mistakes, but we will

eventually get (and "stick to") the conreot answer. Koto,

however, that even if we have gotten to the correct answer (the
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end of the finite sequence) \ie are never sure that Tie have the

correct answer. The sense in which this is "Humean Induction"

may be appreciated by comparing these remarks with the remarks

on "induction" (in the empirical sciences) in the writings of

philosophers of science.

Instead of requiring that the sequence of "yesses" and "nos"

be finite and non-empty, we may require that it should always be

infinite , but that it should consist entirely of "yesses" (or

entirely of "nos") from a certain point on: the class of predicates

obtained (which we call the class of "trial and error" predicates,

for reasons which should be obvious from the foregoing remarks)

is easily seen to be unchanged • We thus arrive at the following

reformulation of our first question: First define P is a trial

and error predicate if and only if there is a (general recursive)

function f such that (for every x, ,X2,.»«,x )

P(x^,...,x^) = lim f (x^,...,x^,y) = 1
y->oo

P(x , ...,x ) = lim f (x^ ,...,x ,y) =
y->oo

where

lim f(x^,...,x^,y) = k =^^ (Ey)(z)(z > y =>

y^>oo

f (x^, ...,x^,z) = k)

Then we ask

Question 1; ^"Tiat are necessary and sufficient conditions (in terms

of the Kleene-Post Hierarchy of arithmetic predicates) that P be

a trial and error predicate? -
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It is obviously better if ^'e knov, not just that P is a

trial and error predicate, but that (by using an optimal program)

vie can keep our machine from ever having to change its mind more

than k times (for some fixed k, independent of the particular

x-,...,x about vhich we are asking). To make this precise, call

a predicate P a k>-trial predicate if there is a g.r. function f

and a fixed integer k such that (for all x,,...,x^)

(1) p(x,,...,x ) = lim f(x,,...,x ,y) = 1

. .
y->oo

(2) There are at most k integers y such that

f(x^,...,x^,y) 7^ f(x^,...,x^, y+1)

[Note that i-'e do not require the fimction f to be such that

P(x^,....,x ) = lim f (x^, . ..,x^,y) =
y—>cx3r

however, this condition will always be satisfied as well if

we replace the given function f by f", where f (x^, . • •,x^,y) = 1

if f(x^,...,x^,y) = 1 and f '"'(x^, . . .,x^,y) = if f (x^, . ..,x^,y)7^ 1.

For, since there are at most k places (values of y) at which

f(x,,...,x ,y) changes its value (for fixed x^,...,x^), there

must be a value of y, say M (depending on x^,....,x^), such that

for y > M, f(x^,...,x ,y) is constant. Then lim f (x^, . « . ,x^,y )
=

^ y—>©

f(x,,«...,x ,M+1) ^ 1 unless P(x^, • . .,x^) , so P(Xj^, .. .,Xj^) =

lim f'''"(x^,...,x ,y) = 0.]
y->OD

(Question 2: ^^rhat are necessary and sufficient conditions that

there exist a k such that P is a k-trial predicate?
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The investigations which resolved these questions have led

also to other questions. For example tajo have been able to prove

(though not straightforwardly) that (for every k) there is a

k+l-trial predicate which enumerptes the k~trial predicates (with

Che less argument place). This theorem is a generalization of

Dekker's result that the recursive sets are a recursively enumer-

2
able family of r.e. sets ; for the recursive sets are the 0-trial

sets in our sub-hierarchy, and the r.e. predicates are all 1-trial.

Our proof uses Dekker's result, together with the theorem in a i|-,

that the pairs < A,B > of dis.joint r.e. sets are a recursively

enumerable family of pairs of r.e. sets. This result is in sec-

tion I 5 of the present paper, together with results on the modulus

3
of oscillation of trial and error predicates: the most difficult

result in g 5 is that the trial and error predicates which possess

a recursive modulus of oscillation can be enumerated by a single

trial and error predicate. These predicates represent perhaps

the largest significant class of Yip ^ TT 2 P^^^^i^^^QS for which

there exists a "normal form" i.e., a recursively eniaraerable set

of expressions such that (a) every predicate in the class is

"designated" by one of the expressions in the setf and (b) given

any expression in the set one can effectively write down at least

one y~
g expression and at least one / f p expression^ for the

predicate it "designates".

Our second result or group of results is connected with the

meta-theory of quantification theory. A number of years ago.
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Mostowski reported on his xonsuccessful attempts to find a con-

sistent formula of quantification theory with no model in the

"smallest field of sets containing the recursively enumerable sets"

Since"set" here means sets of n-tuples, what Mostowski vanted is,

in oiir terminology, a formula with no model in which (1) the

universe of discourse is the natural numbers; and (2) the predicate

letters are all interpreted as r.e. predicates or truth-functions

of r«e« predicates.

The ma.in result of g 3 is : a formula of this kind (the kind

wanted by Mostowski) does not exist. Every consistent formula of

quantification theory does have a model in y~". The proof

uses Theorems 1 and 2, which were discovered as the ansv/ers to

Q,uestion 1 and 2, and the Hilbert-Bernays-Kleene result that

every consistent formula of q.t. (quantification theory) has a

a

model in JZ.oO'U'p' ^ 1957 I gave an example of a consistent

formula of q.t. with no model in which all the predicates belong

to YZ-\ U 77i (s'^swering another question of Mostowski' s); thus

y r represents the '^lowest" level which contains "enough sets"

so that it is always possible to find a model.

The penultimate section of this paper { sk.) consists of some
S

"enumeration theorems" (e.g., the potentially recursive fxmctions

are a recursively enumerable family of partial recursive functions),

some of which are needed for the final section, and others of

which are given as being of possible independent interest,

2, Characterization theorems .

Theorem 1, P is a trial and error predicate if and only if
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Proofs.-

Suppose P is a trial and error predicate. Then by the

definition (of. § 1), there is a g.r. function f such that for

every x^,...,x^:

P(x^,...,x ) = lim f (x^, ,..,x ,y) = 1
y->oo

P(x^,...,x^) = 11m f (x^,...,x^,y) =
y—>aD

Now we observe that since f must approach either or 1,

(1) P(x,,...,x ) = lim f(x,,...,x ,y) = 1 implies that
y->oo "

(2) P(x^,...,x^) = (y)(Ez)(f(x^,...,x^,y) ?^ 1 =>

{z > Y & f(x^,...,x^,z) = 1))

Thus P e Tip* and by (1) v?e have P e J~2> since the predicate

"lim f (x, , . ..,x ,y) = l" is in T'p.
^ 1 m *

—

c.
y->00

To prove the other half of the theorem, assume

(3) P(x3^»»«-»x^) = (Ea)(b)R^(x^,...,Xj^,a,b)

P(x^,...,x^) = (Ea)(b)R2(x^, ...,Xj^,a,b)

where R, and Rp are recursive.

Let T(x, ,,.,,x ,a,c) mean that a is the smallest integer
i m

such that [(Ee) (e is the number of a proof (in, say, Robinson's

arithmetic*^) that R^(Xt , . . .,x^,a,b) for some b)(^-'^(Ee) (e is
d X m ^c

the number of a proof that R-|^(x^, . . .,x^,a,b) for some b) .v.

(Ee)^ (e is the number of a proof that R, (x , . . .,x ,a,b) for

some b)(2?''^(Ee) (e is the number of a proof that R^iyi^f**,

X >a,b) for some b)].
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Define rtiln P(x) as the least x such that P(x) if there is

one, and as otherwise. Fiorther define:

(1^) g(x^,...,x^,7) = min^T(x^,...,Xj^,a,y)

(5) f (x^, ...,x^,y)=l5r(x^,...,x^,g(x^,...,x^,7),y) g

(Eb,c)(c < y^ c Is the number of a

proof that R2(x^,..,,x , g(x^,«..,

Xj^,y),b))

(6) f(x^,...,x^,y) = = f(x^,.,.,x^,y) j^ 1.

g is general recursive, since from the definition of T we

can determine whether or not there is an a such that T(x, ,..•,

X »a,y), once we are given x. .•••,x and y. There is at most
m' **' * ° 1' ' m •'

one such a: hence mln„T(x^ , . • .,x ia.y) equals this xanique a if itaim
exists and equals otherwise. Moreover, if P(x, ,...,x ) is true,

then by (3) there is an a, and hence a least a, such that for

every b, R (x , «.,,x ,a,b) ; and by (3) there is no a such that

for every b Rp(x , ,..,x ,a,b). Hence, if P(x , ...,x ) is true

and a is the least a such that for every b,R^(x , ...jX ,a,b)

holds, then for any sufficiently large y we will have g(x,,«.»,

X .y) = a, and there will be an e < y such that e is the number
m' '

"^

of a proof that Rp(x-,.,.,x ,a,b) for some b. (To verify this,

we observe that since P(x-,...,x ) is assumed true, there is for
1' ' m *

every a^ at least one b such that RpCx, , . . . ,x ,a' ^b) ; and since

a is "least", there is also for every a' < a at least one b such

that R, (x^,..,,x ,a',b). Assuming that we designate R, and Rp

by expressions in Robinson's arithmetic which strongly represent

these predicates [so that each full sentence of these predicates

is provable when true and refutable when false], there will thus
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be 2a provable propositions: R (x , ..«,x ,0,b-),1^2(^-i » • ••*

Taking y to be sufficiently large so that each of these 2a

propositions has at least one proof with nvimber less than y, we

see that T(x, ,...,x ,a',y) does not hold for a' < a. And if

y is also bigger than the least niornber of a proof th?t R2(x^,...,

X »a>b) for some b, then, checking the definition, we see that

T(x^, . . .,x ,a,y) holds, and hence g(x, , . . . ,x^,y ) = a,) Thus, if

P(x-,...,x ) is true, for sufficiently large y we will have both

g(x, ,...,x ,y) = a, where a is the smallest integer such that

(b)R^ (x^ , . ., ,x ,a,b), and f(x, ,...,x ,y) = 1; and in a similar

way we can show that if P(x, ,...,x_) is false, then for sufficlent-

ly large values of y we will have both g(x, , . . .,x ,y ) = a, where

a is the smallest integer such that (b)P.p(x , , . .,x ,a,b), and

f(x, t.«.,x ,y) = 0. (f is clearly general recursive, in spite
1 m

of the apparently unbounded existential quantifier (Eb), since

its computation depends on examining only a finite number of

proofs, namely those with number less than y.)- This completes

the proof of the theorem.

Theorem 2. There exists a k such that P is a k-trial predicate

if and only if P belongs to XIi"> the smallest class containing

the recursively enumerable predicates and closod under truth-func -

tions .

Proof : Suppose P is a k-trial predicate. Then by the definition

(cf. p 1) there is a g.r. function f such that
\ -

(1) P(x^,...,x^) = lim f(x^,...,x^,y) = 1

y—>CO
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(2) there are a_t most k integers y, for each x »•..•. ^x ,

such that f(x. ,...,x ,y) /f(x. ,...,x , y + 1),
1 . m 1 m

Now define yT(x_,...,x ) (for i = l,2,..,,k) as meaning

that there are at least i Integers y such that f (x^, « . «,x ,y) 5^

f(x,,...,x , j+1) S f(x-,...,x ,a.+l) = 1, where a is the ith
1 in i ni 1 1

integer y, in order of magnitude, such that f (x, , .« •,x ,y) j^

f(x, .....x jy+l)) and define N, (Xt,...,x ) as meaning that therel''m'-» ilm
are at least i integers y such that f (x, , . . .

,x ,y) / f(x-,...,

x^,y+l) (§ f(x^,...,x^,a^+l) 7^1. Finally, define Yq(x^,...,x^)

as meaning that f(x-,...,x ,0) = 1, and Nq(x-,...,x ) as meaning

that f(x,,...,x ,0) =^1. Then all the predicates Y. and N. are

recursively eniomerable, and we have:

P(x^,...,x^) ^ Yj^(x^,...,x^) V (\^i<3C^#"«»5c^) <2 \(Xl'*'»x^))

V
(\_2^^1''**'^ra^ "^ \-l^^l''**'^ra^^

^••*

V (Yq(x^,...,x^) -^^^ N^(x^,...,x^)).

In proving the other half of the theorem, we will confine

attention to one-plsce predicates (or sets), since the n-place

case introduces no additional ideas. Let P e
)

,
''• Then

P = (A^-B^)U (A^-B„)0' ... O* (A -B ) for some n where the
1 X c. cL n n

A. and B, are r,e. [noting that every r.e. predicate has the

form A-B, e.g., by taking B = /\ ; every complement of an r.e.

predicate has the form A-B, e.g., taking A = /\ ; and the predi^--

cates of this form f5re closed under intersection, since (A-B)

(C-D) = AC - (BUD). But by the familiar disjionctive normal

form, every truth-function of r.e. predicates can be written as

a disjunction whose terms are just intersections of r.e. predi*

cates and their complements; hence, a disjunction of the kind
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given.] Following Kleene [2], let T(e,x,y) mean that y is the

nvunber of a proof (or computation) that the number x belongs to

the r.e, set t%'ith godel nioriiber e (or the domain of the partial

recursive function with number e, in Kleene's formalism). We

define f(x,y)as follows (where &.,,.,,& and b-,..,,b are godelIn 1' n
numbers of A,,...,A and B. ,.«.,B ):

1 ' n 1' ' n

f(x,y) =1 if there are i < n, Q. < 7 such that
(T(a^,x,6) ^ (e7 T(bj^,x,e))

f(x,y) = otherwise

Then f has the properties (1) and (2) (taking k = 2n).

To verify this, first assume P(x) holds. Then x e A -B.,

for some 1 < n. Then for some e, T(a.,x,e) (by the Normal Form

theorem and the fact that a. is a godel number of A.); and for

no e' is it the case that T(b.,x,e'). Thus f(x,y) = 1 whenever

y > e» On the other hand, if P(x) does not hold, then x e B,

for every 1 such that x e A.« Let N be any integer larger than

all of e-,...,e , where e. is the smallest number which is aIn 1

godel number of a proof that x e B, , if there is such a proof,

and e, = otherwise. Then if y > N and there is an e < y such

that T(a.,x,e), there is also an e < y such that T(b.,x,e); so

in this case f(x,y) = whenever y > N. Thus we have verified

property (1), or

P(x) = lim f(x,y) = 1.
y->oo

To verify property (2), suppose f(x,y) ^ f(x,y+l). There

are two cases:

case (a) f(x,y) = 1, f(x,y+l) = 0.
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In this case, by the definition of f, there are i < n,

e < y (and hence < y + l) such that T(a.,x,e) ^ (e)^ T(b.,x,e);

but f(x,y + 1) = 0, so there must be an e' < y + 1 such that

T(b.,x,e')» Hence we must have e' = y, and e' must = e. (the

smallest number of a proof that x e B. ) • Since there are only

n sets B. altogether, and there Is only one e for each B , this

case can arise for at most n values of y.

case (b) f(x,y) = 0, f(x,y + 1) = 1

In this case, by the definition of f , there are i < n, e<y+l

such that T(aj^,x,e)^ (e) < y+1 T(b.,x,e) ; but f(x,y) = 0,

so e cannot be < y. Hence T-ie must have e = y, and e must be the

smallest number of a proof that x e A.» Since there are only

n sets A. altogether, this case can arise for at most n values

of y.

Combining the two cases, we see that f(x,y) ^ f(x,y+l)

can hold for at most 2n values of y. This completes the proof.

3. Applications to metalogic .

Lemma 1^. Let A be a well formed formula of quantification theory

containing only one predicate letter, say, F« Let A be true when

P is interpreted as standing for F, where F is some predicate of

non-negative integers, and the variables are interpreted as rang-

ing over non-negative integers. Let R be a 1-1 mapping of the

non-negative integers into the family of all sets of non-negative

integers, and G a predicate of non-negative integers such that :

1) a 5^ b => R(a) f) R(b) = A
2) Lj R(a) = N (the set of all non-negative integers)

a
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3) R(a) 5/ /\

i^) G(x^,...,x^) = (E7^,...,7j^)(F(y^,,.,yj^) ^

X]_e R(y^) (g ... igx^ e R (y^)

)

Then A Is also true when P is Interpreted as standing for

the predicate G .

Proof : The mapping

n < > any member of R(n)

is a one-many mapping of N onto N imder which P <—> G

(i.e., F=T (G), where T is the above mapping). Since the

pair < N,F > is a model of A, so must the pair < N,G > be,

q.e.d. (Since T is not necessarily one-one, this Lemma is false

for predicate calculus i-iith identity.)

Theorem 3» Every consistent formula of quantification theory

has a model in > .. .

Proof : If A contains m predicate letters P., each of which is

at most n-place, we construct an A' which is obviously satisfiable

if and only if A is, and xijhich has a single n + 1-place predicate

letter and m distinct individual constants by replacing

P^(x^,,..,Xp) (1 < r < n) by ^x^,...,x^,a^,...,a^).

'

'
'

'

n+1 argviment places

Suppose A' has a model in ^ '\ Then the predicates P.

defined as follows:

^1 l'*''*^r ~ df P(^n»***»^j, f^-\*'**'^l

P„ \ X- , • • • , X 1 — J ^ P \ X, t.**fX ,a •.••,a /ml' ' r ' df 1' ' r ' m ' mm ra
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are also in T~^* Hence it suffices to show that if A* is con-

sistent then A' has a model in Y~^ j it will thon automatically

follow that if A is consistent then A has a model in ^'"«

Finally, A' has a model in >~ ""'

if and only if its existential

quantification with respect to a^ , * , . ,& has a model in )
''

»
1 ni ^"—1

Hence the theorem reduces to the following lemma:

Lemma 2 : Every consistent formula of quantification theory

with one predicqte letter and no Individual constpnts has a

model in > .. •

To prove this we start with a model in
^^ oQ M 2 ^^^

modify it so as to obtain a model in T~'^ » Accordingly, let P

be the sole predicate letter in A, and let A be true when P is

interpreted as standing for the predicate P, where F ) ^ P|
["["p.

By Theorem 1, there is a general recursive function f(x-,...,x ,y)

such that (for all x^.^.ttX )In.
F(x^,...,x ) = lim f (Xt ,...,x ,y) = 1

X n ,,>_v^^ 1 ny->00

P(x^,...,x ) = lim f(x^,...,x ,y) =
y->oo ^ "

13
¥e define sets of integers R(i) as follows :

if 1 7^ 0, R(l) = -[ J(b,i)j

where b is the smallest Integer such that (for all x^,**.,x )o 1' ' n

y > b ^ x^,,..,x^ < 1 => f(x^,...,x^,y) = f (x^, .. .,x^,b)

(i.e., b is a "modulus of convergence" of f for x-,...,x < 1).

Ve take R(0) as the set of all integers not belonging to

any set R(i), i 7»^ 0,

It is easily proved that the sets R(i) are all disjoint

and non-empty, (Towards dls jointness, use the fact that J(a,b) =
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= J(c,d) implies that a = c and b = d; and towards non-etnptlness

observe that for any k, J(k,0) e R(O)a) And by the definition

of R(0) every integer is in one of the sets R(i)«

Now we define a predicate G as folloxjs :

G(x-^,...,x^) = (E7^,..«,y^)(P(y^,...,y^) & x^ t R(y^) 8 ...

... & x^ e R(y^))

By Leirana 1, A is true when P is interpreted as standing for

G. Hence it only remains to prove that G e Y"^*

(For simplicity, sequences "x-,...,x ", ^^Y-,,»**>j", etc.,

will henceforth be abbreviated by capital letters. E.g., in

this notation the definition of G would be written:

G(X) = (EY)(F(Y)S X e R(Y)).)

To prove that G e j
..", observe that for any integer x, there

are only two possibilities: x e R(0), and x e R(L(x)). Hence

for any n integers x^,...,x there are just 2 possible cases:

1) x^,...,x^ e R(0)

2) x^,...,x^_^ e R(0),x^ e R(L(x^))

.

2^) x^ e R(L(x^)),...,x^ e R(L(x^))

Moreover, the truth value of G(X) on the assumption that

any given case holds can be effectively deterrained: For instance,

the truth value of G(X) on the assumption that case 1) holds is

that of F(0,0, , . , . ,0) (which we will assume given); xjhile if,

say, case 2^-1) holds, the truth value of G(X) is that of

F(L(x- ), . . .,L(x ),0). In this case, we simply find the largest
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of the ni-OTbers L(x-, ) , . . . ,L(x^_^) . Suppose it is L(x.). Then

G(X) is true if f (L(x^) , . . .,L(x^_^) ,0,X(x ) ) = 1, and false

otherwise. And similarly with all the other cases.

^'fe can now write down a series of zeros and ones which will

terminate in 1 if G(X) is true and in if G(X) is false, as

follows

:

We assume first that x.eR(L(x.)), ^^;here L(x.) is the largest
'

J J J

of the numbers L(x. ). Then we compute the truth-value of G(X)

according to the assumption, and put down 1 as our "first trial

answer" if the value is "truth" and if the value is "falsity".

The first trial ansxijer is never revised unless an integer k is

generated such that K(x.) < k, but for some Z < L(x ), it is not
J J

the case that f(Z,K(x.)) = f(Z,k). If this ever happens, then

f(Z,y) is not equal to f(Z,K(x.)) for all y > K(x.), Z < L(x.),
J J J

and x.eR(O).
J

If we ever discover that x. e R(0), then we pick the largest

of the remaining numbers L(x.) and rpeat the whole reasoning to

arrive at our next trial answer. (If L(x.M is the largest of

the remaining numbers, we can determine the truth-value of G(X)

on the assumption that x., e R(L(x.,)), because we now know that
J J

X. e R(0), and so it suffices to know the truth-value of F(Z) for

Z < L(x,, ) to compute that of G(X).)

In this way we cannot change our trial answer more than n

times (since, except for the trial answer corresponding to case 1),

a trial answer is put doi-fli only when it is assigned that x^ e R

(L(x.)) for some 1; and such an assumption is either retained

forever in our procedure—in which case it is correct—-or
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abandoned at some time and never subsequently reinstated.

Let the above procedure for putting doun trial answers be

mechanized, and program the Turing machine so that at sjiy stage

y it repeats the last number it put dovn, if no nei' trial answer

is forthcoming at that stage. Let f(X,y) = the number put down

by the machine at the yth stage. Then f satisfies the conditions

listed in Theorem 2, and it follows that G e 5~
n' • q«e.d.

Hitherto we have considered models in which the domain (the

range of the individual variables) was the set of all non-negative

integers. For models of this kind. Theorem 3 is false for pred-

icate calculus with identity, since there are even consistent

formulas with no infinite model at all. If T-'e generalize slightly,

by allowing the domain to be any recursive set, then the question

whether Theorem 3 extends also to predicate calculus with identity

remains open, ^-^e are, however, able to prove:

Theorem L|.. Every consistent formula of predicate calculus with

identity has a recursive model with a TJ -,
domain •

Proof : In the foregoing proof, it suffices to modify the defini-

tion of R(0) by taking R(0) =
J J(b,0) j , where b is the smallest

integer such that for all y > b, f(0,...,0,y) = f (0, , , .,0,b)

.

Let S = [j(b,i)
I
(y)^^(Z)(Z < 1 => f(Z,y) = f ( Z,b) ) g (b' )^^

(EZ)(Ey)^^, (Z < i <^ f(Z,y) y/^ f(Z,b»)).] Then we now have

S = UR(i), Since the mapping
i

n<—> any member of R(n)

is now one-one (because R(n) is now a unit set, for all n), the

argument of Lemma 1 shows that < S,G > is a model for A, where
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G is defined as in the preceding proof. Define G--- as follows:

G-«-(X) is true if the truth-value of G(X) is "truth" on the

assumption that case 2 ) holds (we shoved above that this could

be effectively determined), and G«-(X) is false if the truth-value

of G(X) is "falsity" on the assumption that case 2 ) holds.

Then G-- is a recursive predicate (we make free use of Churches

Thesis; however, it is straightforward to eliminate it by the

techniques of [2]) and G agrees with G v/henever case 2^ holds:

hence, whenever all the arguments e S. Thus < SjG'* > is also

a model for A,

It remains only to shoxj that S is a M, set (i.e., Shas

a recursively eniomerable complement). To do this, we observe

that the unbounded existential quantifier (Ey) can be eliminated

by using the alternative definition:

S = { J(b,l)I (y)^^(Z)(Z < 1 => f(Z,y) = f(Z,b)) S

(b»)^ ^((Z)(Z < i => f(Z,b') = f(Z,b)) => (Eb't)^ ^(EZ)

(z < i (g f(z,bt) y f(Z,b'M ^ b' < b"))] .

(To verify this, note that if b is not the smallest modulus

of convergence of f, for arguments bounded by i, then either b

is not a modulus of convergence at all, or there is a b' smaller

than b such that f (Z,b' ) = f (Z,b" ) = f(Z,b) for all b'« with

b« < b'» < b, and all Z < i.)

l|.« Some enumeration theorems . Two of the following theorems

will be used in the last section. The others are given because

of their possible independent interest.
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Terminology: ql^,qp,... will be the n-place partial recursive

functions, in any standard enionieration. \iv,V.^,,,, vill be the

n-place r.e. predicates in the standard enumeration (i.e.,

Vj^ = j x|(E7)T^(i,X,y) ] , where T^ is the n+2-place predicate

"y is the number of a proof (or computation) that the n-tuplet

X satisfies the n-place r.e. predicate with number i", as in

[2]). A family F of n-place partial recursive functions Tjill be

called a recursively enumerable famll; of partial recursive func-

tions if there is an n+1-place partial recursive function h,

which "enumerates" the family i.e., such that for every f e F

there is an i such that ^ f = X,-li(i,X) and conversely, X^h(i,X)eP

for every i. (Thus F = ^ X-.h(0,X), X^;i(l,X) , . . . | ,) A family P

of n-place recursively enuriierable predicates will be called a

recursively enumerable family, if there is an n+1-place r.e.

predicate R(i,X) such that for every R e F there is an i such

that P =
I
x|R(i,X) \ and conversely, j x|R(i,X)

j
e F for every i,

Similarly, a fajnily F of pairs < P,? > of n-place recursively

enumerable predicates is called a recursively enumerable family

if there are n+1-place reciirsively enumerable predicates R-j^yRp

such that for every < P,Q, > e F there is an i such that

P = J x|R^(i,X) \ and simultaneously ^ = [ x|R2(i,X)J , while

conversely < { x|R^(i,X)] , j x|R2(i,X)j > e F for all i.

Henceforth, Q,^ will be the family of all n-place partial

recursive functions, G the family of all n-place general recurs-

ive fimctions, f"^ the family of all "finite" fimctions (here:

functions whose domain consists of the first m n-tuplets, in the

standard lexicographic eniimeration, for some m; or the integers
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< in, for some m, in the case of singulary functions), R^ the

family of all n-place partial recursive ftinctions with

recursive domain, and P^ the family of all n-place

potentially recursive functions (partial recursive functions

which agree where defined with some general recursive function—

-

it is known that there exist members of Q, which are not in P .

)

It is well known that G is not a recursively enumerable family.

However, I shall prove

:

Theorem ^ ; The family G (7 F is a recursively enumerable family ,

for all n.

Theorem 6 : The family R is a recursively enumerable family, for

all n «

Theorem 7 ' The family P is a recursively enuraerable family ,

for all n «

Theorem 8: The family of all pairs < VJ^,w^ > such that \J^ i^t^ =

/\ is a recursively eniAinerable family, for every n «

Proof of Theorem 5 > To simplify our notations, we give the

following proofs for the case of singulary functions and predic-

ates. The proofs for the general c?se may be obtained by insert-

ing superscript "n" (we omit the superscript "l" for the singulary

case) and putting "X" for "x".

We define q,*^, for each 1, as follows:

a b
(i) q.'Hx.) =23 if a = q. (x) and b is the smallest

integer which is the number of
a proof (in, say, Robinson's arith-

; , 1 .:-•: motlc) that (y) q. (y) is defined,

(ii) q,-"-(x) is not defined if q^ (y) is not defined
for any y < x
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(In the general case, Y < X has to be interpreted as meaning

that the n-tuplet Y precedes the n-tuplet X in the lexicographic

ordering.

)

We also define \|/(i,x) = y = (Ea,b)(y = 2^3^ ^^ (j)^(i,z) = a

(V, b is the smallest integer which is the number of a proof

that q.(n) is defined for all n < x), where c|.(l,x) (in the gen-

eral case, 4 (i,X)) is the partial recursive function introduced

in [2] with the property that for all i,x qAx) = 4-i(i»x); and

we see that the predicate \!;(i,x) = y is r«e« (since only existen-

tial quantification, con juxiction, and r,e. predicates occur in

the definition) which implies that the function \l/(i,x) is partial

recursive; and it is obvious (comparing the definitions) that

for all i,x

q^'Hx) = \l;(i,x)

so that the fiinctions Qq"*'", q-, '"",.. . form a recursively enumer-

able family. Moreover, from (i) we have that q.^(x) is

defined => q,(y) is defined for all y < x => q.'-Ky) is defined

for all y < X, Thus q.* e G (J F.

VTien X = 2^3^, let (x)q = a (as in [2]). Then, since q^-"-(x)

is of the form 2^3^ when defined, q,--- e G U P => ^^r^)Q e GUF,

And if q. e G U p, it is easily verified that q = iq^'''^')Q (I.e.,

>.^qj(x) = X^(q^-^(x) )q). Thus (qQ")^, (q^-"-)Q, . . . is an enumeration

in some order of all and only the functions in G U P. But

(q^-'^Q = \(^i'^'(x))o "^
'^x^^^^'^^^O' ^^^ (>l/(i,x))Q is evidently

partial recursive (regarded as a function of both i and x)

since \1; is and X (x) is«- This completes the proof of Theorem $,
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Corollgiry . The n-place recursive predicates are a recurrivaly

enur.erable fanlly , for every n « (This v;as first proved by Dekker).

Proof * It suffices to take the predicate (\); (i,X))^ = 1, vhere

\^ is the function constructed in the preceding proof (in the

general case '.'e add a superscript n, since the function \|/ depends

on the number n of argument -pi aces considered). For, if P is
1

A

recursive, then its characteristic function is general recursive

and so P = ^ xUxj* (ijX))^ = 1
]

for some i, by the preceding

proof. Conversely, if ^^(^ (i,X))^ is general recursive, then

I
x|(\j;^(i,X))Q = l] is reciirsive, and if X^(\l/^(i,x) )q is "finite",

then j x| (\!;^(i,X) ) = l] is finite, and hence recursive. -This

completes the proof.

Proof of Theorem 6 . Let t be a g.r. function such that ''L/q\,

^^±.i-\))»»» sre the recursive sets (n-place predicates, in the

general case) in some order. (By the preceding Corollary these

form a recursively enumerable family; so by the Iteration Theorem'

such a function exists). Define:

?(i,x) = y = (t^(K(l),x))Q = y <g X E ^"^^(1^(1)),

so that ^(i,x) is partial recursive, and X £(i,x) agrees uith

(q^. .v) on niorabers in ^'*.(t,(^,)) ^^^ ^^ undefined on numbers

outside of ^'' /t/^w* Then the domain of X ^(i.x) is K/t/,\x
t ( L ( i )

)

X ' t ( L ( 1 )

)

if ^%(1)^0 ^ ^' ^^^ ^^ finite if (^w- Jq e ?. So, in either

case the domain of X ^(i,x) is recursive, and X ^(i,x)e R.

On the other hand, if q. e R, then there is a j such that the

domain of q, is V., .v. Also, the function f defined by:

f(x) = q^(x) if X e ^'\ri\ and f(x) = otherwise is general
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recursive (because >L( ^\ is recursive)* Then \^^j_(x) = the

function vhlch agrees with f on numbers in VJ. and is undefined

outside of w = X 4(J(e,j),x), where e is any godel number of f
J ^

(recalling that (q^*'')^ = ^^ wl^^n q^ e G). Thus X C(0,x), X CQUO Q X X ,

(l,x),..« is an enumeration in some order of the members of R.

Proof of Theorem. 7 . Define:

H(i,x) = y = (\}/(K(i),x))Q = 7& ^^\{i)>

so that H(i,x) Is partial recursive and X H(l,x) agrees with

(q^, .v)_ on numbers in V/ , . , , and is undefined on numbers outside

of V' , . , . Then X H(i,x) agrees with a recursive function where
L( i ) X

defined (noting that every fimction in P can be extended to a

general recursive function, e.g., by giving the value wherever

the function was not defined), and has as its domain either ^^^t/*)

or some finite set: so, in either case, an r.e. domain. Thus

X H(i,x) is potentially recursive, for all i. On the other hand,

if q. e P, then q. agrees with some general recursive q where

defined, and has some r.e. set W. as its domain. Hence
J

q. = X H(i,x), where i = J(e,j).

Proof of Theorem 8 * It suffices to take R^(i,x) = (Ey)(T(K(i),

x,y) <^ (z)^y T(L(i),x,z)) and R2(i,x) = (Ey) (T(L( i) ,x,y) (^ ^^^<y

T(K(i) ,x,z) ) , Then B. ,R^ are defined from r.e, predicates

using conjunction, existential quantification, and bounded imi-

versal quantification, and are therefore r.e.. Also, it is easily

seen that R^ => ^B.^^: so

f x|R^(i,x)] []\x\ R2(i,x)] = A for all 1. Finally, if

Wj^O W = A , then
J
x|R^(e,x)J = V^ and f x| R2(e,x) j = \J^,
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where e = J(i,j); so < ^'^^/^ > = < ^x|R^(e,x)J ,^x|R2(e,x)j > .

-This completes the proof,

I employed the construction used to prove Theorem 8 In [5]

in the course of giving an example of an axiomatizable theory

with only monadic predicates (all of Those finitely axiomatizable

subtheories were accordingly decidable by elimination of quan-

tifiers) in which any two disjoint r.e. sets were exactly separ-

able (and which was, therefore, essentially undecidable
) , but

without explicitly stating the theorem,

5, A "hierarchy" theorem; moduli of convergence; moduli of

oscillation .

So far we have looked only at the union of the k-trial

predicates for all k. It is, however, also natural to ask

whether they form a "sub-hierarchy"; that is, whether for each

k, there is a predicate which is a k + 1-trial predicate but

not a k-trial predicate; and, if so, how this "sub-hierarchy"

is related to the larger class of "trial and error" predicates,

—i.e., to Y~p f) jTp* In this section, we discuss these

questions

•

Lemma 3 . The class of k-trial predicates (for each k) is closed

under negation .

Proof: Let P be a k-trial predicate and let fp be the correspond-

ing fxinction such that

(1) P(X) = lim fp(X,y) = 1
y—>(©

(2) There are at most k values of y such that
f(X,y) fi f(X,y+l) for each X
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Define:

fp'(X,y) = if fp(X,y) = 1 V

f (X,y) = 1 otherwise

Then it is easily verified that

(1') P(X) = lim fp'(X,y) = 1 (recalling that lim fp(X,y)
y—>00 y—>00

always exists)

(2*) There are at most k numbers y such that fp' (X,y) ^
fp'(X,y+l) for each X.

Thus P is a k-trial predicate if P is. q.e.d.

Theorem 9. ( Enumeration Theorem for k-trial predicates ;) The

n~place k-trial predicates are enumerated by a single n+1-place

k+1-trial predicate; i.e., there is a k+1-trial predicat e P(i,X )

such that for every n-place k-trial predicate T there is an e

such that (for all X) T(X) e. P(e,X), and such that, conversely ,

P(e,X) is a k-trial predicate for every value of e .

Proof ; (As before, we use the notations for the singulary case:)

We saw in the proof of Theorem 2 that every k-trial predicate

can be written in the "normal form"

(A) \ U (Y^_^ - N^) (J ... U(Yq-N^)

where

(i) Y^ is recursive

(11) Y^ and N^^ are r,e. (for all 1)

(iii) Y^O N^ = /\ (for all i)

Conversely, any predicate of the form A is k-trial; for

given a predicate expressed in the form (A) one can program a
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Turing Machine as follows

:

The machine gives "yes" (or "l") as Its first "trial answer"

if X e Yp^ and "no" (or "O") otherwise (since Y„ is recursive

the machine can be programmed to do this). At each subsequent

stage YZ ^^ ^^^ computation, the machine puts down "yes" as its

Y2 * 1st trial answer if there are e < YZ. » i < k such that

T(y^,x,e) ^ (e»)< r- (T(n^_^^,x,e' ) ), or if x e Yq and there is

no e <^ such that T(n^,x,e), or if T(7, ,x,e) for some Q < J~ ,

where J^ tJ2' " * *'^\r
^^'^ ^-yf^p' * * *

'^Ir
^^^ godsl numbers of

Y^,Yp,«..,Y and N, ,Np,..«,N respectively; and otherwise the

^
+ 1st trial answer is "no". By the argument used to prove

the second half of Theorem 2, this series of "yesses" and "nos"

converges to "yes" if there is a Y. such that x e (Y. - N. ,

)

or if X e Y, ; and the machine will not "change its mind" more

than 2k times. But in fact, the machine will not "change its

mind" more than k times* For the machine "changes its mind"

only when:

case (a) x is generated in one of the W, , i > 0, and Y. ^ was

the only Y. in which x had been previously generated without

having also been generated in N.; or

case (b) x is generated in one of the Y, , 1 > 0, and x has not

already been generated in N._|_-. (and Y. is the only Y, in which

X has been generated x-jithout having been previously generated in

N. , } and x has already been generated in N. in case x belongs

to Yq).

But for each value of i > 0, only one of these cases can

arise by the disjointness of Y. and N. • Thus any predicate of
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the form (A) is a k-trial predicate. Note that the proof uses

both the recursiveness of Yq and the disjointness of Y., N.,

Of course, the reference to Turing Machines is inessential:

Vlhat we have given is a definition of a g.r, function (as in the

proof of Theorem 2) with the properties needed to show that (A)

Is a k-trial predicate.

Now, suppose we recursively enumerate all the predicates of

the form (A) (using for the purpose our recursive enumeration of

the recursive sets (Corollary to Theorem 5) and of the pairs

N.,Y. of disjoint r.e. sots (Theorem 8), The above arguraent

does not provide a uniform way of programming a Turing Machine

to generate the appropriate sequences of "yssses" and "nos"—
simply because the argument did not use only the recursiveness

of Yp,, but assvimed that the decision method for Yq was available,

and there is no effective procedure for going from a godel number

of a recursive set V. to a decision method. However, we can

effectively go from an expression of the form (A) (assuming we

are given the godel numbers of the Y. and N.), to a program

which expresses (A) as a k+1-trial predicate. Namely, since the

only thing we lack is a decision procedure for Yq, we define

the "first trial answer" to always be "no", and the Y2.
*" ^^t

trial answer as above, except that Yq is now treated exactly

like the other Y., i.e., the 7^ + 1st trial answer is "yes" if

there is an e < ^ such that T(y^,x,e) <g, (e'
)< y- (T(n^^^,x,e' ),

where now < 1 5 k (with the second factor omitted for i = k).

The machine can now "change its mind" in one more way: namely,

there will be a "change of mind" corresponding to i = if x Is
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generated in Y^^ before it is generated in N. , and the currently

accepted answer is "no". Previously, if x Yq, "yes" was taken

as the first trial answer (using the decision method for Yq)

which is why there was no "change of mind" corresponding to

1=0. Thus the predicates of the form (A) are individually

k-trial predicates, but the best result that we can get "with

uniformity" i.e., if we want a "meta-program" from going from

a normal form to a program for writing down the corresponding

sequences of yesses and nos—- is that they are k+1-trial predic-

ates. That this is indeed "best possible" follows from the ar-

gument of Theorem 10, below, which shows that any predicate that

enumerates all the k-trial predicates (of a given number of

argument-places) cannot itself be k-trial.

Prom these facts, we can easily obtain our theorem. Let

t be a g.r. function x^jhich enumerates the recursive sets (i.e.,

such that
^'^^(o^» ^"^t(l)***' ^^® ^^^ *^® recursive sets, in some

order) and let ^, m be g.r. fionctions such that < ¥ ^ (q) »^''m(
0)"^*

"^ ^^ ^C\)* ^'^

(1) ^ »••• ^^® ^^- ^^® pairs of disjoint r.e, sets

in some order (the existence of such functions—even primitive

recursive functions with these properties-—follows from our

Theorem 5, Corollary, and our Theorem 8 by the Iteration Theorem

(cf. n. 17)). Let Kq, K_,...,I^ be recursive "k+1-tupling funo-

tions" recursive functions such that the k+1-tuplets

< Kq(0),...,K^(0) > , < Kq(1),...,Kj^(1) >,... are all the k+1-

tuplets of non-negative integers in some order. Then
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•••
'^'"'t (K^(l)) -VKgd))' '^ <"t(Kp(l)) - 'Vkj^CI))'!

enumerates all the predicates of the form (A), and so all k-trlal

predicates. That the predicate P(i,x) is k+1-trial (regarded as

a predicate of both i and x) follows from the preceding argument

#

Corollary . Not every k-trial predicate corresponds to a function

f which is primitive recursive; but all k-trial predicate s P

correspond as k-H-trial pred icate s to such a function (i.e., there

is a primitive recursive function f such that P(X) = lim (X,y) = 1.

y->oo
and such that for each X there are at most k+1 values of y for

which f(X,y) 7^f(X,2:+l).

Proof. The primitive recursive sets can be enumerated in such

a way that there is a uniform effective procedure for going from

a godel number (i.e., from s(i), if the sets in the enumeration

in question are W , ., W ..,..., where s(i) is a suitable prim-

itive recursive ftinction) to a decision method (primitive recurs «:

ive characteristic function). But from the definition of Yq

in the proof of Theorem 2, it is clenr that Y-^ is primitive

recursive whenever f is. Thus an enumeration of all the predic-

ates of the form (A) with primitive recursive Y„ contains all

the predicates of the form (A) (for a given k) with a correspond-

ing function f which is primitive recursive. And these predic-

ates can be enumerated by a k-trial predicate (using the just-

mentioned fiinction s(i) instead of t(i) in the defintion of
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P(i,x)), If this predicate corresponded to a primitive recurs-

ive f, so would P(i,i), and then by the argument of Lemma 3»

so would "P(i,i). But this leads to the usual "Russell's Paradox"

contradiction (given in full in the proof of the next theorem).

To prove the other half of the Corollary, we use the primit-

ive recursiveness of the T predicate and the fact that the primit-

ive recursive predicates are closed under bounded quantification

to conclude that the "sequence of yesses and nos" constructed in the

proof of the preceding theorem to show that P(i,x) is a k+1-trial

predicate (i.e., that "vith imiformity" the predicates of the

form (A) are k + 1-trial) is primitive recursive. Replacing

"yes" by 1 and "no" by we then have the desired primitive

recursive function.

Theorem 10. (" Hierarchy theorem" for ^ i""'^
for each k, there

is a k + 1-trial predicate which is not a k-trial predicate

.

Proof . (The usual "diagonal argument":) The k + 1-trial

predicate P(i,x) of the preceding theorem is such a predicate.

For, if P(i,x) were k-trial so would P(i,i) be (since the k-trlal

predicates are evidently closed under substitutions), and hence

so would P(i,i) be (by Lemma 3). Then by Theorem 9 there would

be an e such that -f i|P(i,i)| = £i|P(e,i)j • Setting e = i,

we have P(e,e) = e e •[ i | P(e,i)] = e & j i \ P(i,i)j = P(e,e),

which is a contradiction.

Corollary . For k > 0, the k-trial predicates are closed imder

neither conjimction nor disjunction .
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Proof * The k-trial predicates are closed under negation, and

for k > 1 they include all r.e, predicates (since every r.e.

predicate A can be vritten as A O (A "A )f ... U (A " A ))•

So, if for some k they were closed under either conjunction or

disjunction, the k-trial predicates (with that fixed value of k)

would contain all of } .. '\ contrary to Theorems 9 and 2«

Following Dekker, we shall call an infinite set "immune"
—_ it

if it has no infinite r.e. subset. Before leaving the class
2 t »

we give a new proof of

Theorem 11. ( First proved by Markwald : ) if P e ^n'**, then either

P is not immime or P is not immune .

Proof . If P e ) -T, then P is k-trial for some k by Theorem 2.

Let k > be the least k such that P is k-trial (for k = the

theorem is trivial), and let P be expressed in the form (A) by

the method used in Theorem 2o ^''e recall that:

(i) Y, iJ N. = class of all X on which the machine "changes
^ ^ its mind" exactly k times (f(X,y) j^ f(X,y+l)

for exactly k values of y),

(ii) Y, = subclass of Y, U N, on which the answer is "yes"
' k k k ^

after the k-th "change of mind" (f(X,aj^+l) =1).

(iii) N, = subclass of Y, U N, on which the answer is "no"
^ after the k-th "chSnge of mind" (f(X,aj^+l) 7^ 1).

Y. U N must be infinite, since otherwise P would be

(k-l)-trial, contrary to the choice of k • Hence either Y.

or N, must be infinite, and clearly Y. CI P and N. CT P. Thus

either P or P is not immune, q.e.d.

We note that this is an example of a property of
}

, -

predicates which is not at all obvious on the basis of the
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definition of > ^^ , but which is quite clear on the basis of

Theorem 2.

Let us call a function gp a modulus of convergence of f

if, for all X,

fp(X,y) = fp(X, gp(X)) whenever y > gp(X)

we have at once:

19
Theorem 12, If P is a trial and error predicate, then a

corresponding function f can have a recursive modulus of

convergence if and only if P is recursive .

Proof . (Evident, since P could be defined in terms of the

recursive functions f, gp in the form

P(X) = f(X,Sp(X)) = 1,)

For any f corresponding to a trial and error predicate P,

let h^(X) = ,- the number of v?.lues of y for which f(X,y) ^

f(X,y+l), In analogy with the notion of "modulus of convergence"

we will call any function g„ satisfying g_ > h„ (for all X) a

modulus of oscillation of the function f. V'e have:

Theorem 13 « If P is a trial and error predicate, P can have

a recursive modulus of oscillation even though P is not recursive .

However, the "best possible" modulus (i.e,, h „ ) cannot be

recursive unless P is .

Proof : Every k-trial predicate has by definition a constant

modulus of oscillation, namely g^(X) = k. Since the k trial

predicates include the r,e. predicates (for k > 1), there is

a predicate with a recursive modulus of oscillation which is

not recursive. On the other hand, if h- itself is recursive.
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P can be defined in terms of f in the form:

P(X) = f(X, aj^^^j^j + 1) = 1

where a, ,y-s is the h_(X)th value of y, in order of magnitude,

for which f(X,y) 7^ f(X,y + 1).

It should be remarked that the predicates in Y~o ' ' p

which seem to naturally arise in metamathematics normally possess

a primitive recursive modulus of oscillation. For example, the

construction given in Kleene (cf. , p ) of a ^Z. p'^ ' ' 2

-model for an arbitrary consistent formula of quantification

theory actually leads to a model in which every predicate

corresponds to an f with a very simple primitive recursive modulus

of oscillation; likewise for predicate calculus with identity;

and likewise for Markwald's result that there is a P in ^ pQ / jp

such that P,P are both immxme. By contrast, the last result is

false for 7^".. ''', as we proved above; the first is true for ) ..

'^,

but difficult to prove (our Theorem 3)i while the second

(analogue of Theorem 3 for predicate calculus with identity) is

still an open problem. Thus we may say that YUp^' ' '
p"^^®'^^^^*®^

which are not (or are not obviously) k-trial predicates for

any k frequently occur in the literature; but not (as far as I

know) predicates which are not obviously in the class of P for

which there is at least one corresponding f with a primitive

recursive modulus of oscillation. An example of this observation

is

Theorem ll;. The n-place predicates in j ,
""^ can be eniomerated

by an n+l-place predicate P e Yip ^ ~^ P* ^'^^°^^ corresponding f
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has a primitive recursive modulus of oscillation, (Sharpening

the result of Mostowski, vihich results if the reference to the

modulus of oscillation is deleted.)

Proof . It suffices to modify the proof of Theorem 9 hy letting

k vary when the enumeration of all the predicates of the form (A)

is made. (This requires using an enumeration of all finite

20
sequences, say as provided by the Chinese Remainder Theorem

,

instead of just the finite sequences of a given length.) The

ith predicate of the form (A) will have k+1 as a (uniform)

modulus of oscillation, as we saw; so it suffices to arrange the

enumeration so that the "k" (In the normal form) can be prlmltlve-

recursively "read off" from the index 1. (This Is easily done:

details are left to the reader.)

In view of the foregoing, it is natural to ask whether

or not every P e Y^f] ij p corresponds to at least one f with

at least a general recursive modulus of oscillation. The

negative answer to this question will be an immediate corollary

to our final theorem, the proof of which also provides a consider-

able amoiont of information about other matters (e.g., the possib-

ility, and effect on the modulus of oscillation, of using prim-

itive recursive f Instead of general recursive in the definition

of trial and error predicate; the existence of a "normal form"

for predicates with general recursive resp. primitive recursive

moduli of oscillation):

Theorem 1S» There is (for each n) a primitive recursive function

f( l,X,y) such that lim f(i,X,y) always exists, and such that
=.=, y^>oo

the YZp ^ II p~ predicate lim f(l.X,y) = 1 enumerates all the
y->oo
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n-place predicates P In Y^p ^ ' ' 2 ^^^ which there exists at

least one corresponding; f i;ith a general recursive modulus of

oscillation *

Proof . (As before, we use the notations for the singular^ case.)

1 2
We will coordinate to (Q4'"')q (the ith function in G (J P ) a

primitive recursive function q.' defined so that if, for fixed x,

the successive values of (Qj'^Oq are, say, 1,6,9 (this means

(q^*)Q(x,0) = l,(q^-:^)Q(x,l) = 6, (q^--)Q(x,2) = 9); then the

successive values of q.' may be 0,0,0,1,1,6,6,6,6,9,9... i.e.,

q.' (regarded as a sequence) consists of the same numbers as

(Q.**^")q» except for the initial zeros, and in the same order,

but with (in general) more repetitions before a new value is

taken on. Moreover, for each fixed x, the point at xijhich the

value (q.-'OQ(x,m) is taken on by q ' will depend on the computa-

tion of (q.«)Q(x,m): if the smallest y such that y is the godel

number of a proof that (q. •'^-)Q(x,m) = s is y^, then the value

(q***^) (x,m-l) will be repeated in the sequence q.' xontil the

y^th element has been passed (if necessary).

Formally:

a) q'(i,x,0) = (for all i,x)

(ii) q' (i,x, m + 1) = if there is no y < m+1
such that y is a godel number of a oroof
that (q.-^-)Q(x,0) is defined*

(iii) q(i,x,m+l) = (q.-^)Q(x,0) if m+1 is the
least godel numDer of a proof that

- <
' (q^'"')QTx,0) is defined.

In this case, we say that m+1 x-corresponds
to 0,
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(iv) If m+1 x-correspends to i, and no nxomber < m + 2 is the
godel number of a proof that (q. «) (x,i+lT Is defined,
then ^ "

q'(i,x,m+2) = q' ( i,x,m+l) , and m+2 also x-corresponds to i,

(v) If m+1 x-corresponds to i and some number < m+2 is the
godel number of a proof that (q >*) (x,i+l)~= s, for
some s, then

q'(i,x,m+2) = (q -'^^(xji+l), and m+2 x-corresponds
to i+1. ^ ^

Also, we put q.'(x,m) = ,_qMi,x,m). It is clear from

the definition that q,' is primitive recursive (noting that

a simultaneous definition by primitive recursion of a function

and a relation such as our "x-corresponds to" can be always

reduced to a simple definition by primitive recursion by well-

known techniques) uniformly in i, and has the following

properties

:

(1) if lim (q.'^)Q(x,y) exists, so does lim q. ' (x,y) and
y->oo y->co

lim q^'(x,y) = lim (q. -"-)Q(x,y) ; and
y->CD y—>00

(2) Even if (<1^"^)q e F, the function q.' will be total (the

"last" value of (q."*)r^ will simply be repeated forever,

for each value of x, in the sequence

qi'(x,0), q^^' (x,l),...).

Since every general recursive function is in G I-/ P, and

lira (q,--^)Q(x,y) = lim q «(x,y) whenever lim (q,-"-)f.(x,y)
y->QO ^ ^ y->0D y->CD

exists, it is clear that the class of trial and error predicates

is tinchanged if we restrict the f to lie in the family qQ',q-',.,,
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Also, we note that if (q. •"')^ is a total function with R(x) as

a modulus of oscillation, then R(x) + 1 is a modulus of oscilla-

tion for q^'(" + 1" because the starting value can make one

more possible value of y for which q*'(x,y) 7^ q '(x,y + 1))—

-

this is clear from the "x-corresponds to" relation between

successive values of (q^ •'OQ(x,y) and successive groups of repeated

values of qj'(x,y). However, lim q. ' (x,y) does not always exist.
y->oo

To rectify this, we now consider new functions q. 4(x,y),

constructed from pairs q^ ' » (q^'"")Q (with first member in q^',

q, ',...., and second member in G U F"^ ) as follows:

(i) q(i,j,x,e) = if there is no
ra < e such that m is the go'del

-• •• number of a proof that (q.-"-)^ (x) = s,
for some s ''

(ii) q(l,j,x,y + m^) = q.'(x,y), if ra^

is ^he smallest riimiber

which is the go'del number of a
proof that (q .*"')q(x)=3,

for some s,and there are not
more than s values

>: of m < y such that

qi'(x,y) ^ q^^' (x,

m+1

)

(iii) otherwise q(l,J,x,y+l) =

q(i»j,x,y)

Also we put q^ *(x,y) = ^^ q(i,j,x,y).

He now maintain that (1) the sequence ^IrrtQ) i,ir))»

^Tr/i\ Tft\f**» consists of functions which all have a general
i\.[L) ,li\l

)

recursive modulus of oscillation; and (2) if P e YII2 ' ?

and there is any corresponding f with a general recursive

modulus of oscillation, then there is such an f in this family.
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To prove (1), observe that if (q.-""-)Q(x) Is total, then, by the

construction of q. ., (qj'"')Q is a modulus of oscillation for

q. ., But if (q*'"')Q Is not total, (q.-'Og ^^s a finite domain.

In this case, q. .(x,y) = for all y, except when x has one
i» J

of a finite set of values. So is a modulus of oscillation

with finitely many exceptions, and on these exceptions there

are still only finitely many values of y for which q. .(x,y) ^

q. .(x,y+l)« Hence there is a modulus of oscillation which is
J-» J

zero with finitely many exceptions, and a fortiori a recursive

modulus of oscillation. To prove (2), observe that if q, '(x,y)

21
has (q^'-On^^) ^^ ^ modulus of oscillation then q. .(x,y)

has the same limit and modulus of oscillation as qj'(x,y)

uniformly in x. But every q.' which has a recursive modulus

of oscillation has some (q. '"'j^ as a modulus, since all recursive

functions are in G U P, Thus, setting

f(i,x,y) = q(K(i),L(i),x,y)

we have the theorem.
;

-.,

Corollary . The n*»place predicates which correspond to at least

one f with a primitive recursive modulus of oscillation are

enumerated by a single n+1-place predicate with a corresponding

f which has a general recursive modulus of oscillation.

Proof . It is well known that the n-place primitive recursive

fxonctions are enumerated by a single n+1-place general recursive

function. Hence, by the Iteration Theorem (cf. n. ) there

exists a singulary primitive recursive function s_ such that

q ,qv, q /-.v,.... are the n-place primitive recursive functions.
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Since (q , .v''^)n = Q / m is a modulus of oscillation for q^ . ,.su)0 sij; ^x,s(j)

(because all primitive recursive functions are total), and

since f can be restricted to lie in the family ^ q_Sq •,,,, ?

(cf. n» ), we have at once that the predicate

lim q"(K(i), s(L(i)),X,7) has the desired
3r->oo

properties. (Here we write the superscript "n", because we have

explicitly indicated the general case by writing "X" for "x".)

Corollary B. There exists a predicate which corresponds to an

f with a p;eneral recursive modulus of oscillation, but not to

any f with a primitive recursive modulus of os cillatlon .

Proof * The predicate constructed in the proof of the preceding

corollary has this property, by the "diagonal argument".

Corollary C . There is a trial and error predicate which does

not correspond to any f with even a general recursive modulus

of oscillation *

Proof . The predicate constructed in the proof of Theorem l5

(namely, lim f(i,x,y) = 1) has this property, by the "diagonal
y->00

argioment " •
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FOOTNOTES

w) This research was supported by the United States Air Force

through the Air Force Office of Scientific Research of the Air

Research and Development Command, under Contract No, APl|.9( 638)-777»

Reproduction in whole or in part is permitted for any purpose

of the United States Government,

1) For going from a finite sequence to an infinite sequence

(with repetitions) cf, the proof of Theorem 3, below. Going in

the other direction is trivial: it suffices to instruct the

machine that it is to "print out" an answer only when it is

different from the previous answer,

2) For a definition of this concept see the beginning of g l\.,

3) Intuitively, g(x) is a "modulus of oscillation" if, for all

X, the machine never changes its mind more than g(x) times given

X as "input", (The formal definition is in § 5») That there

be a recursive modulus of oscillation is evidently a very lenient

requirement on a trial and error predicate,

l\.) An expression (Ex)(y)R, Xijhere R is a recursive predicate,

is called a J^-expression here, and (x)(Ey)R is called a

'
I
p-expression. Predicates that can be expressed in both these

forms form the class J~2 ] j
o* (^f. [1], ch, 9; Davis, however,

uses "P" and "Q" where we use YZ ^^'^ ' I •)

5) Cf. [3].

6) ^''e use K--- to denote the closure of 9 class of predicates K

under truth functions. In particular, £^ " is the smallest

class of predicates containing the r.e. predicates and closed

under truth-f\inctions.
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7) Cf. [2], p. 391;, Theorem 35.

8) In [kl.

9) Cf. [?]• This system is chosen because it is strong enough

so that all recursive fixnctions are formally reckonable in it,

but neak enough so that its consistency admits of a constructive

proof.

10) This is, of course, just another way of writing

G(x^,...,x^) = (Ey^, . ..,7j^)(F(y-j_,...,yj^) (^ x^ e R(y^)(2, ... <^

X e R(y ))•n "'n

11) Since we are considering formulas with only one predicate

letter, x^;e can identify a model with a pair < A,B > such that

the formula is true when the individual variables range over

A and the predicate letter is interpreted as stpnding for B.

12) Every consistent formula has such a model, by the theorem

cited in n,7. '•'
'

' ^ >

13) Here and in the sequel, J is the widely used (see [1],

pp. i|3-i4-5) recursive mapping of pairs of integers onto (different)

integers. It has the property that every number x = J(y,z) for

uniquely determined y,z (usually written y = K(x), z = L(x)),

where all three functions J,K,L are primitive recursive,

II4., The s3rmbol X may be read "the function whose value for

any x is".

15. ^'e assume, of course, that some normal form for the

statements "(y) q^(y) is defined" is adopted in the notation

of first order arithmetic, such that the godel number of such

a statement is a recursive function of i and x, and such that
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Robinson's arithmetic is complete and correct for statements

of this form. (Cf. [?], [6].)

16) I.e., the function Cp defined by Cp(X) = 1 = P(X) and

C(X) = = P(X).

17) This is Kleene's "S^^" Theorem. Cf. [2], p. 3[|2, [1], [6].

18) Observing that if the raachine "changes its mind" not more

than k-1 times, except on finitely nany X, the program can

always be changed on these finitely many X to sJiow that P is a

R-1-trial predicate.

19) "A corresponding f" means, of course, an f in terms of which

P can be defined as in i 1 of this paper.

20) Cf. [1], appendix.

21, Here use has been nade of the fact thnt one may restrict

f to be in the family j ^q^ > ^-i
'

> • • • ( without altering the

modulus of oscillation by luore th.^n + 1, and hence without

altering such properties as having a general recursive modulus

of oscillation.
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